SIXDYN MOTION PLATFORMS

The SIXDYN Platform is able to accurately reproduce motion reference profiles in the six rigid body degrees of freedom. Thanks to its advanced real-time control system, it can be used in many applications such as driving, flight or seismic simulation. Several models with different payloads are available.

APPLICATIONS

- Motion simulation. Easy integration with third party software packages
 - · Driving simulators
 - · Flight simulators
 - · Marine vehicles
 - · Military vehicles
- Hardware/Human in the Loop Testing.
 Customizable sets of inputs and outputs.
- Academic resource. Programmed in National Instruments ® LabVIEW ®
 - · Seismic simulation
 - Structural Dynamics and Vibrations
 - · Attitude Mechanics
 - · Robotics
 - · Control Theory

KEY FEATURES

- Standard payloads: 300 kg/500 kg (other payloads on demand)
- Six degrees of freedom: X, Y, Z, Roll, Pitch and Yaw
- Electromechanical actuation technology. BLDC servomotors
- Frequency range: 0-20 Hz
- Easy integration with third party software for DoF references generation in real time
- Rugged and reliable design
- Low maintenance requirements

SIXDYN 300 KG

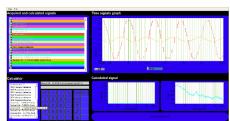
SIXDYN 500 KG

Control rack

VZERO ENGINEERING SOLUTIONS, S.L. Plaza de Prosperidad, 2. 28002 Madrid, SPAIN +34 667 382 128, +34 918 052 367 info@vzero.eu www.vzero.eu

VZERO reserves the right to change specifications in this brochure without prior notice

SIXDYN MOTION PLATFORMS



SGP CONTROL SOFTWARE SUITE

- RPD: Reference Profile Definition per DoF.
 - Basic waveforms: sine, square, etc.
 - · From ASCII file
 - Time-magnitude pairs
 - · Swept sine and Random
- External (third party software)
- TME: Test Management and Execution
 - Load and review of previously defined tests
 - Real time tuning of control parameters
 - Test execution management: run/stop test, pause, abort test. Data saving
 - Waveform visualization: Reference and actual waveform in DoF/Actuator space
- TDR: Test Data Review
 - Load and review test results from previously completed tests
 - Calculated channels in Time and Frequency domains
 - Basic reporting tools
- RTC: Real time Control
 - · Inverse and Direct Kinematics solution
 - Predictive PID real time control of servoactuators individual trajectories
 - Predictive/Adaptive Degree of Freedom control loops
 - Specimen automatic weighting and inertias characterization

PERFORMANCES TABLE						
MODEL	SIXDYN 500			SIXDYN 300		
Rated PL	500 [kg]			300 kg		
Frequency range	0-20 [Hz]			0-20 [Hz]		
Power	35 [kW]. 400 Vac, 3 Ph + PE + N, 50/60 Hz			14 [kW]. 400 Vac, 3 Ph + PE + N, 50/60 Hz		
DOF PERFORMANCES ⁽¹⁾						
MODEL	SIXDYN 500			SIXDYN 300		
DoF	Displacement	Speed	Acceleration	Displacement	Velocity	Acceleration
Х	± 250 [mm]	± 0.70 [m/s]	± 7 [m/s²]	± 180 [mm]	± 0.90 [m/s]	± 10 [m/s²]
Υ	± 250 [mm]	± 0.70 [m/s]	± 7 [m/s²]	± 170 [mm]	± 0.90 [m/s]	± 10 [m/s²]
Z	± 200 [mm]	± 0.50 [m/s]	± 8 [m/s²]	± 130 [mm]	± 0.65 [m/s]	± 10 [m/s²]
Roll	± 22 [deg]	± 90 [deg/s]	± 800 [deg/s²]	± 23 [deg]	± 175 [deg/s]	± 600 [deg/s²]
Pitch	± 22 [deg]	± 90 [deg/s]	± 800 [deg/s²]	± 21 [deg]	± 175 [deg/s]	± 600 [deg/s²]
Yaw	± 30 [deg]	± 120 [deg/s]	± 1000 [deg/s²]	± 31 [deg]	± 110 [deg/s]	± 800 [deg/s²]

⁽¹⁾ Theoretical calculations in single axis tests from home position. DUT moments of inertia assumed to be those of a cube with maximum mass.

VZERO reserves the right to change specifications in this brochure without prior notice